
Shapley Feature Utility

Ian C. Covert
University of Washington

Seattle, WA, USA
icovert@uw.edu

Scott Lundberg
Microsoft Research

Redmond, WA, USA
slund1@cs.washington.edu

Su-In Lee
University of Washington

Seattle, WA, USA
suinlee@uw.edu

Abstract

We propose Shapley feature utility (SFU) as a method for quantifying the global
utility of features to an optimal model. Instead of explaining individual predictions,
SFU describes a feature’s importance through its impact on model performance.
Our approach is built on the Shapley value from cooperative game theory and
leads to an elegant interpretation in terms of mutual information. We propose a
sampling-based approximation and demonstrate its application to three datasets.

1 Introduction

For all machine learning models, but particularly modern black-box models, it is difficult to understand
which features are most informative. Recent research on model interpretability has focused on local
attribution, i.e., explaining how features contribute to an individual prediction [7, 10, 12]. We
consider the problem of global feature importance, and seek to allocate credit to features for their
impact on the model’s accuracy.

As a motivating example, consider the problem of disease subtype classification from gene expression
data. Determining the genes that enable a model to make accurate predictions may lead to improved
biological understanding and can guide future work on finding therapeutic targets. However, existing
methods such as feature ablations, feature selection, and local explanations do not provide a suffi-
ciently nuanced understanding of feature importance. We require a method that is mathematically
principled and that accounts for complex feature interactions.

Here, we present Shapley feature utility (SFU), a principled approach to quantifying how much
accuracy is derived from making each feature available to the model. Building on ideas from
cooperative game theory, our approach is based on the Shapley value, a principled and widely used
credit allocation method [9]. We show that SFU has an elegant information-theoretic interpretation
and propose a model-agnostic, sampling-based approximation.

2 Shapley Feature Utility

2.1 Model Performance as a Cooperative Game

Consider a set of d features {X1, X2, . . . , Xd} ∈ X that can be used to predict a discrete target
variable Y ∈ Y ≡ {1, . . . ,M}. We use S ⊆ D ≡ {1, 2, . . . , d} to represent a set of indices,
S̄ ≡ D \ S to denote the complement, and XS ≡ {Xi : i ∈ S} to indicate a subset of features.

We now derive an approach for quantifying each feature’s contribution to an optimal model’s
performance. Given a subset of the features XS , a model that perfectly optimizes the loss will often
incur non-zero population risk. It can be shown that the optimal classification model f∗ trained with
cross entropy loss and features XS outputs the conditional distribution of the response variable, or
f∗(xS) = p(Y |XS = xS). The model then has the following population risk, where H represents
the discrete Shannon entropy and DKL represents the Kullback-Leibler divergence [1]:
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= H(Y |XS). (1)

We can replicate this derivation for any subset of features XS and find that the population risk for
an optimal model is always given by the conditional entropy H(Y |XS). It is natural to turn this
process into a cooperative game, where a player’s participation corresponds to a feature being made
available to the model. To satisfy the property that the empty set S = ∅ evaluates to zero (a common
convention for cooperative games), we define the game v as the reduction in risk for the target variable
Y compared to the situation where no features are available:

v(S) = H(Y )−min
f

E
[
`(f(XS), Y )

]
= H(Y )−H(Y |XS)

= I(Y ;XS). (2)

We now seek to provide global feature importance scores based on this game. This can be viewed as
allocating credit to each of the players (features) and a compelling tool for doing so is the Shapley
value, which provides the unique allocation strategy that fulfills a set of fairness axioms [9]. Shapley
values form the basis of popular local attribution methods [2, 7, 11], but this provides an approach for
global interpretability that generalizes the Shapley regression approach of Lipovetsky and Conklin [5].

The Shapley values φi(v) for the features i = 1, 2, . . . , d in our game are:

φi(v) =
∑

S⊆D\{i}

|S|!(d− |S| − 1)!

d!

(
I(Y ;XS∪{i})− I(Y ;XS)

)
=

∑
S⊆D\{i}

|S|!(d− |S| − 1)!

d!
I(Y ;Xi|XS) (3)

We refer to these Shapley values φi(v) as the Shapley feature utility. They are a weighted sum of con-
ditional mutual information terms, which represent how much information is added by incorporating
Xi when XS is already known.

Following this derivation, we can apply a similar approach to regression tasks trained with MSE
loss. We omit a derivation, but when the cooperative game is defined as the amount of explained
variance in Y i.e., v(S) = Var(Y )− E[Var(Y |XS)], an interpretable identity arises from the law of
total variance. In both the classification and regression cases, the Shapley feature utilities satisfy the
properties of being non-negative (φi(v) ≥ 0 for i = 1, . . . , d) and of summing to the total reduction
in uncertainty (

∑d
i=1 φi(v) = I(Y ;X) in the classification case, and

∑d
i=1 φi(v) = Var(E[Y |X])

in the regression case).

2.2 Sampling-Based Approximation

To calculate the Shapley feature utilities φi(v), it seems as though we require access to an exponential
number of optimal models (one for each subset of features). That is clearly infeasible, so we proceed
through a sampling-based approximation that relies on a single model. Our approach is similar
to sampling methods proposed in prior work [3], and it relies on the observation that these values
(Eq. 3) involve nested expectations over data-label pairs (x, y) and feature sets S ⊆ D drawn from a
distribution induced by the Shapley value.

We propose a sampling procedure that works in two steps in order to share computation over all
features. First, we use Algorithm 1 to calculate a large number of samples, which individually

2



approximate the loss for a particular (x, y) pair and a particular subset of features S ⊆ D. Second,
we use Algorithm 2 to process the samples and approximate the Shapley values using an importance
sampling re-weighting scheme.

Combining Algorithms 1-2 results in an estimator φ̂i(v) for each Shapley feature utility value. We
omit a rigorous proof, but it can be shown that for an optimal model f∗ and sampling of the missing
features from their conditional distribution p(XS̄ |XS), the estimator φ̂i(v) converges to the correct
value φi(v) in probability as n→∞, m→∞ (parameters in Algorithm 1).

Unfortunately, we rarely have access to an optimal model f∗ and sampling from the exact conditional
distribution is usually difficult. In practice we rely on a trained model f and require an approximation
to the conditional distribution, such as sampling from the marginal distribution (an assumption of
feature independence) or imputing with the mean (a further assumption of model linearity) [7]. The
final result is therefore a biased estimate of the value φi(v), and may be interpreted as the utility of
different features to a particular model f .

Algorithm 1: Accumulating samples
input : trained model f : X 7→ Y , number of samples n, inner loop samples m
SUBSETLIST← []
LOSSLIST← []
for i = 1 to n do

sample a random permutation O ∼ π(D)
sample a number of features N ∼ UNIFORM(0, d)
determine subset of features S = O[:N ]
sample (xi, yi) ∼ p(X,Y )
YLIST← []
for k = 1 to m do

sample xS̄ ∼ p(XS̄ |XS = xiS)

YLIST.append(f(xiS , xS̄))
end
ŷ ← mean(YLIST)
ˆ̀← `(yi, ŷ)
SUBSETLIST.append(S)
LOSSLIST.append(ˆ̀)

end
return SUBSETLIST, LOSSLIST

Algorithm 2: Calculating Shapley feature utilities
input : SUBSETLIST, LOSSLIST
for i = 1 to d do

LOSSINCLUDED←
[

ˆ̀(d+1)
2|S| for (S, ˆ̀) in iterate(SUBSETLIST, LOSSLIST) if i ∈ S

]
LOSSDISCLUDED←

[
ˆ̀(d+1)

2(d−|S|) for (S, ˆ̀) in iterate(SUBSETLIST, LOSSLIST) if i /∈ S
]

φ̂i(v)← mean(LOSSDISCLUDED) − mean(LOSSINCLUDED)
end
return φ̂1(v), . . . , φ̂d(v)

3 Experiments

In this section, we apply the Shapley feature utility method to several datasets. Our experiments
are conducted on the MNIST digit recognition dataset [4], gene expression microarray data from
the Cancer Genome Atlas (TCGA) [13], and mortality data from the NHANES survey [8]. For the
gene expression data, which was collected from breast cancer patients, we confined our analysis
to 50 genes. Several genes were chosen for known breast cancer associations, and the remaining
genes were chosen at random. For the NHANES data, we omitted features that were frequently
missing. A model was required for each dataset, so we trained a multi-layer perceptron (MLP) for
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Figure 1: Shapley feature utility estimates for MNIST, NHANES and TCGA.

digit recognition (97.5% accuracy), a MLP to classify among four breast cancer subtypes for the
gene expression data (79.3% accuracy), and a logistic regression model to predict whether NHANES
participants lived beyond ten years (81.2% accuracy).

We then estimated Shapley feature utilities for each dataset using the proposed sampling method.
When running Algorithm 1, we imputed missing features with their mean for MNIST and TCGA,
and sampled from the marginal distribution for NHANES, due to its categorical features. The results
are shown in Figure 1. The MNIST plot shows that, naturally, only pixels near the center have high
utility to the model. The NHANES results are intuitive, showing that age contains the most signal
for predicting mortality, followed by gender and blood pressure, which corroborrates findings from
prior work [6]. For the TCGA data, we manually marked the genes with documented breast cancer
associations, and we observe that these genes generally receive the highest Shapley feature utilities.

In a final experiment, we investigated the convergence properties of our sampling method. We ran the
algorithm several times for MNIST and TCGA to examine the estimator’s variance (Figure 2 right)
and the Spearman correlation with the final estimates, based on one billion samples (Figure 2 left).
The estimates converge with more samples, but more slowly for MNIST due to a larger number of
features (d = 784 vs. d = 50). With MNIST, we observe that using the smaller validation set resulted
in less estimator variance, but not faster convergence to the correct values. The required number of
samples for a satisfactory result is best represented by the Spearman correlation plot: to achieve a
rank correlation of ρ = 0.9, roughly 106 samples are required for TCGA, and 108 for MNIST. In our
implementation, these require 2 minutes and 180 minutes, respectively.

4 Discussion

In this work, we proposed Shapley feature utility (SFU) as a method to quantify the global importance
of each feature to a model. We presented a sampling-based approximation and applied it to three
datasets, finding plausible results in each case. Future work will focus on developing faster estimation
techniques and better approximations to the conditional distribution, providing a more thorough
characterization of SFU’s properties, comparing it quantitatively with alternative feature importance
measures, and exploring high-impact applications.
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Figure 2: Convergence analysis of Shapley feature utility estimator.
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[13] Katarzyna Tomczak, Patrycja Czerwińska, and Maciej Wiznerowicz. The cancer genome atlas
(tcga): an immeasurable source of knowledge. Contemporary oncology, 19(1A):A68, 2015.

5


	Introduction
	Shapley Feature Utility
	Model Performance as a Cooperative Game
	Sampling-Based Approximation

	Experiments
	Discussion

