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Abstract

Unsupervised feature selection involves finding a small number of highly infor-
mative features, in the absence of a specific supervised learning task. Here, we
propose the restricted autoencoder (RAE) framework for selecting features that
can accurately reconstruct the rest of the features. We justify our approach through
a proof that the reconstruction ability of a set of features bounds its performance in
downstream supervised learning tasks. Based on this theory, we present a learning
algorithm for RAEs that iteratively eliminates features using learned per-feature
corruption rates. We apply the RAE framework to two high-dimensional biological
datasets—single cell RNA sequencing and microarray gene expression data, which
pose important problems in cell biology and precision medicine—and demonstrate
that RAEs outperform nine baseline methods: they select features with better
reconstruction ability, and that perform better in downstream classification tasks.

1 Introduction

Many domains involve high-dimensional observations X ∈ Rd, and it is often desired to select a
small number of representative features a priori and observe only this subset. Unsupervised feature
selection should select features that are informative in a general sense, and not just for a specific
supervised learning task. As a motivating example, we may be restricted to measuring the expression
levels of only a small number of genes, and then use these measurements in a variety of future
prediction tasks, such as disease subtype prediction, cell type classification, and so on. We refer to
these as the principal genes, because they capture as much information as possible.

In this work, we present an approach for selecting features based on their reconstruction ability.
We provide a novel theoretical result which shows that the ability of a set of features to impute
all the remaining features bounds its performance in downstream supervised learning tasks. Based
on this theory, we introduce the framework of restricted autoencoders (RAEs) to learn a model
that reconstructs the full observation vector while relying on a subset of inputs. In experiments on
single-cell RNA sequencing data and gene microarray data, we demonstrate that RAEs outperform
nine baseline methods, selecting genes with better reconstruction ability, and that perform better in
downstream classification tasks.

2 Restricted autoencoders for feature selection

2.1 Imputation objective

For a random variable X ∈ Rd, feature selection algorithms determine a set S ⊂ {1, 2, . . . , d} of
selected indices, and a setR ≡ {1, 2, . . . , d} \ S of rejected indices. We use the notation XS ∈ R|S|
and XR ∈ R|R| to denote selected and rejected features, respectively.
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Figure 1: Features are selected by learning a restricted autoencoder (RAE), and can be applied in
downstream prediction tasks.

The goal of unsupervised feature selection is to select features XS that are most representative of the
full observation vector X . An approach that has received some interest in prior work is to measure
how well XS can reconstruct XR [15, 18, 7, 14, 17, 26, 10]. It is intuitive to consider reconstruction
ability, because if the rejected features can be reconstructed perfectly, then no information is lost when
selecting a subset of features. There are many other methods for unsupervised feature selection [5,
11, 25, 1, 24, 16], but none designed explicitly to ensure strong performance in prediction tasks.

To make our motivation precise, we derive a justification that has not been presented in prior work.
First, we define the imputation loss to quantify how much information XS contains about XR.
Definition 1 (Imputation loss). The imputation loss L(S) quantifies how well XS can reconstruct
XR using an unrestricted function. It is defined as:

L(S) = min
h

E[ ||XR − h(XS)||2 ] (1)

Using the notion of imputation loss, we attempt to describe how well XS can predict a target variable
Y ∈ R. Specifically, we consider the degradation in performance (performance loss) when a model is
fitted to XS instead of X . The following result shows that the performance loss is bounded by L(S).
Theorem 1 (Performance loss). Assume a prediction target Y such that the conditional expectation
E[Y | X = x] is (C, α)-Hölder continuous with exponent 0 < α ≤ 1, so that the following holds
almost everywhere in the distribution of X:

∣∣ E[Y | X = a]− E[Y | X = b]
∣∣ ≤ C · ||a− b||α2 . (2)

Then, the performance loss for features XS can be upper bounded:

min
f1

E
[(
Y − f1(XS)

)2]−min
f2

E
[(
Y − f2(X)

)2] ≤ C2 · L(S)α. (3)

The bound in Theorem 1 suggests that XS should be selected to minimize L(S), because doing so
reduces the upper bound on the performance loss. To conserve space, we omit a proof. Given this
result, we proceed with an approach to select XS by minimizing the imputation loss as follows:

S∗ = argmin
|S|=k

{
min
f

E[ ||XR − f(XS)||2 ]
}

(4)

2.2 Learning restricted autoencoders

We aim to select k features by solving the problem in Eq. 4, but the objective has combinatorial
complexity. We therefore propose the framework of restricted autoencoders (RAEs) to jointly
optimize for S and f , and train a model to reconstruct the full observation vector while relying on a
subset of the inputs. The approach is depicted in Figure 1.
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Figure 2: Imputation loss results. The MSE is normalized by the total variance of each dataset.

To train the model, we propose a learning algorithm based on backwards elimination. By leveraging
feature ranking methods, it is possible to learn a RAE by iteratively training a reconstruction model,
ranking features, and eliminating the lowest ranked features, in a procedure that is analogous to
recursive feature elimination [9]. This proved to be more effective than simply selecting the top
ranked features, and performed better than sparsity inducing penalties [8, 10, 21].

To rank features we consider two sensitivity measures, both of which are based on learning per-feature
corruption rates. The first method stochastically sets inputs to zero using learned dropout rates pj for
each feature j ∈ S [2]. Similarly, the second method injects Gaussian noise using learned per-feature
standard deviations σj . We refer to these methods as Bernoulli RAE and Gaussian RAE, due to the
kind of noise they inject. Based on the logic that important features tolerate less corruption, we rank
features according to pj or σj .

During training, both methods require penalty terms to encourage non-zero corruption rates, and a
hyperparameter λ to control the tradeoff between accurate reconstruction and the amount of noise.
The objective functions for each iteration of the elimination algorithm are shown in Eqs. 5-6, and
both are optimized using stochastic gradient methods and the reparameterization trick [13, 20].

min
θ,p

Em∼B(p)

[
EX [(X − hθ(XS �m))2]

]
− λ

∑
j∈S

log pj (5)

min
θ,σ

Ez∼N(0,σ2)

[
EX [(X − hθ(XS + z ))2]

]
+ λ

∑
j∈S

log(1 +
1

σ2
j

) (6)

3 Experiments

3.1 Datasets and baselines

We apply the RAE feature selection approach to two publicly available biological datasets: single-cell
RNA sequencing data from the Allen Brain Atlas (n = 24,411, d = 5,081) [22], and microarray gene
expression data from cancer patients, with labeled samples from the Gene Expression Omnibus [6]
(n = 11,963, d = 7,592) and labeled samples from The Cancer Genome Atlas [23] (n = 590,
d = 7,592). We performed standard pre-processing, using log1p of the expression counts for
the single-cell data, and applying batch correction to the combined gene microarray datasets. For
both of these data domains, determining a small subset of informative features is an important
problem. In precision medicine, a key goal is to identify a small set of expression markers for subtype
classifications. In cell biology, pre-selection of a small number of genes is required for fluorescent
in-situ hybridization (FISH) methods [19, 3] that measure expression levels on intact tissue.

We compare RAEs with nine baseline methods. Jolliffe B4 [12], principal feature selection (PFS) [4],
greedy feature selection (GFS) [7], the leverage score method [17], and autoencoder feature selection
(AEFS) [10] either explicitly or implicitly relate to reconstruction ability, albeit primarily with a linear
function. Max variance simply selects features with the largest variance; due to batch correction,
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Table 1: Classification accuracy using subsets of features

Cell type classification Cancer subtype classification

# Features 5 10 20 30 50 5 10 20 30 50

Laplacian 0.219 0.251 0.443 0.505 0.680 0.676 0.640 0.748 0.748 0.748
MCFS 0.111 0.278 0.532 0.622 0.713 0.532 0.514 0.613 0.685 0.685
UDFS 0.291 0.510 0.656 0.702 0.767 0.505 0.532 0.631 0.640 0.649
PFS 0.268 0.335 0.465 0.565 0.649 0.622 0.685 0.703 0.721 0.712
AEFS 0.320 0.574 0.759 0.806 0.847 0.523 0.486 0.550 0.640 0.604
Variance 0.447 0.541 0.741 0.793 0.822
Leverage 0.463 0.634 0.780 0.816 0.852 0.523 0.568 0.613 0.658 0.649
Jolliffe 0.264 0.557 0.712 0.793 0.844 0.667 0.676 0.622 0.685 0.703
Greedy 0.203 0.367 0.580 0.691 0.820 0.657 0.673 0.684 0.750 0.753
B. RAE 0.484 0.674 0.789 0.822 0.845 0.679 0.687 0.701 0.721 0.753
G. RAE 0.487 0.667 0.771 0.822 0.846 0.645 0.678 0.686 0.694 0.740

it could not be applied to the microarray data. Laplacian scores [11] and multi-cluster feature
selection (MCFS) [1] aim to preserve local structure through spectral information, and unsupervised
discriminative feature selection (UDFS) [24] aims to retain local discriminative information.

3.2 Imputation performance

We first demonstrate that RAEs select features that achieve a low imputation loss. Both datasets
were split into training, validation and test sets, and we used only the unlabeled samples for the gene
microarray data. We selected features using each of the methods, and then trained separate imputation
models to predict only the rejected features. Hyperparameter choices were made on validation data.
We found that RAEs are robust to both shallow and deep architectures, and that iteratively eliminating
features was critical (we eliminated 20% of the remaining features at each iteration).

Figure 2 displays the results, showing the imputation loss for different numbers of selected features.
RAEs achieve the best performance on both datasets. The gap is larger on the single-cell RNA
sequencing data, where the RAEs perform significantly better than all baselines. RAEs and GFS
achieve similar results on the microarray data, outperforming all other methods by a large margin.

3.3 Downstream classification performance

Next, we assess the performance of selected features in downstream prediction tasks. Both datasets
have associated classification problems that, in certain settings, would need to be performed using
a subset of features: cell type classification (150 types) for the single-cell RNA data, and cancer
subtype classification (4 types) for the microarray data. For the single-cell data, we used the same
dataset split; for cancer classification we split the labeled TGCA samples. MLPs were trained for
each task, and the reported accuracy is the average performance of 10 models on the test data.

Table 1 displays the results for both datasets. Features selected by RAEs perform very well in
both tasks, particularly when using a smaller number of features. Overall, RAEs achieve the best
performance most of the time (7/10), and when they do not, they are still among the best. We posit
that RAEs perform well because they select principal genes that contain maximum information, and
are therefore guaranteed to perform well in a variety of prediction problems (see Theorem 1).

4 Discussion

In this work we presented the framework of restricted autoencoders (RAEs) for selecting features
based on their reconstruction ability, and a learning algorithm based on learning per-feature corruption
rates. We showed theoretically and empirically that the reconstruction ability of a set of features has
implications for their performance in downstream prediction tasks. Experiments on single-cell RNA
sequencing and microarray gene data demonstrated the ability of RAEs to select highly informative
principal genes, which could impact how biologists determine genes for FISH and precision medicine.
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