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ABSTRACT

Unsupervised feature selection involves finding a small number of highly infor-
mative features, in the absence of a specific supervised learning task. Selecting
a small number of features is an important problem in many scientific domains
with high-dimensional observations. Here, we propose the restricted autoencoder
(RAE) framework for selecting features that can accurately reconstruct the rest of
the features. We justify our approach through a novel proof that the reconstruc-
tion ability of a set of features bounds its performance in downstream supervised
learning tasks. Based on this theory, we present a learning algorithm for RAEs
that iteratively eliminates features using learned per-feature corruption rates. We
apply the RAE framework to two high-dimensional biological datasets—single
cell RNA sequencing and microarray gene expression data, which pose important
problems in cell biology and precision medicine—and demonstrate that RAEs
outperform nine baseline methods, often by a large margin.

1 INTRODUCTION

Many domains involve high-dimensional observations X € R?, and it is often desired to select a
small number of representative features a priori and observe only this subset. For natural spatio-
temporal signals, compressive sensing provides a popular solution to this problem (Candes et al.,
2006; |Donoho et al.| |2006). While prior knowledge of the structure of data is not available in the
more general setting, a similar approach can be fruitful: unsupervised feature selection should select
features that are informative in a general sense, and not just for a specific supervised learning task.

As a motivating example, we may be restricted to measuring the expression levels of only a small
number of genes, and then use these measurements in a variety of future prediction tasks, such as
disease subtype prediction, cell type classification, and so on. More generally, big data problems
are impacting virtually all research, and the ability to observe an informative subset of the original
features offers important advantages. It yields knowledge about the structure of the data, reduces
storage requirements, makes downstream computation more efficient, and alleviates the curse of
dimensionality. By contrast with feature extraction methods, such as PCA (Jolliffel |2011), feature
selection also reduces the burden of measuring all features.

The prior work on unsupervised feature selection is diverse, with methods designed to provide good
clustering results (Cai et al., 2010; Dy & Brodley, |2004) to preserve the local structure of data
(He et al., 2006} Zhao & Liul 2007} |Ca1 et al., 2010), and to eliminate redundancy (Farahat et al.,
2011; Mitra et al., [2002). The abundance of existing approaches reflects a lack of consensus on the
correct optimization objective for unsupervised feature selection. We argue that for settings where
the selected features will be used in downstream prediction tasks, the optimal approach is to select
a set of features that can accurately reconstruct all the remaining features.

The contributions of this paper are the following:
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1. We propose the “restricted autoencoder” (RAE) framework for selecting features based on
their reconstruction ability. The approach is justified by novel theoretical results, which
show that the reconstruction ability of a set of features bounds its performance in down-
stream supervised learning tasks.

2. We propose an approximate optimization algorithm for the RAE objective function, based
on learning per-feature corruption rates. The algorithm trains a RAE by iteratively elimi-
nating features that are not important for performing accurate reconstruction.

3. We apply our approach to two biological datasets, where finding a small number of infor-
mative features is an important scientific problem. Experiments demonstrate that RAEs
outperform nine baseline methods: they select features that achieve lower reconstruction
error and perform better in downstream prediction tasks.

2 RELATED WORK

Early work on unsupervised feature selection was motivated by the observation that PCA (Pearson)
1901} Hotelling}, |1933)) yields principal components (PCs) that depend on all input features. In two
early studies, [Jolliffe (1972)) developed heuristics to discard features while roughly preserving the
results of PCA, and Krzanowski (1987) proposed assessing the quality of a feature subset through a
rotation of its PCs. McCabe| (1984])) derived several criteria for defining an optimal subset of features,
taking inspiration from the numerous criteria that are optimized by PCA.

Among the criteria proposed by McCabe| (1984), one represents the mean squared error (MSE)
when the rejected features are reconstructed by the selected features using a linear function. The
reconstruction loss was revisited in several more recent works, with each addressing the challenge of
combinatorial optimization. Farahat et al. derive an efficient algorithm for greedy feature selection
(Farahat et al.,|2011)), while Masaeli et al.| (2010)) and |Zhu et al.|(2015) select features by sparsifying
an auto-associative linear model. Several methods optimize a similar objective using per-feature
leverage scores (Boutsidis et al.| 2009azb}; |2014; [Papailiopoulos et al.,[2014).

The prior work that considers reconstruction ability has focused primarily on reconstruction with
a linear function, although one study proposed using multivariate regression trees (Questier et al.,
2005)), and there have been nascent efforts to perform feature selection with autoencoders (Chandra
& Sharma), 20155 |Han et al., [2018)). The differences between our work and these studies are i) we
rigorously justify the reconstruction loss through its implications for downstream prediction tasks,
ii) we explain the importance of considering reconstruction with a nonlinear function, and iii) we
propose an algorithm that optimizes the objective function more effectively.

Other approaches for unsupervised feature selection find clusters of similar features (Mitra et al.,
2002; |Lu et al.| 2007), select non-redundant features with a greedy algorithm based on PCA (Cui &
Dy, |2008)), use spectral information to preserve the local structure of data (He et al., 2006; Zhao &
Liul [2007;/Zhao et al.,[2010), retain local discriminative information (Yang et al.,2011)), and attempt
to preserve clustering structure (Dy & Brodley, 2004} Boutsidis et al.,[2009a};|Cai et al.,[2010). These
approaches are designed with other aims, not to select features for use in supervised learning tasks.

In Section [5} we implement many of these methods and compare them with our approach using
multiple datasets and downstream experiments.

3 FEATURE SELECTION BASED ON IMPUTATION ABILITY

3.1 IMPUTATION LOSS

For a random variable X € R?, feature selection algorithms determine a set S C {1,2,...,d} of
selected indices, and aset R = {1,2,...,d} \ S of rejected indices. We use the notation XS € RI®|

and X® € R/l to denote selected and rejected features, respectively. For notational convenience
we assume that all random variables have zero mean.

The goal of unsupervised feature selection is to select features X that are most representative of
the full observation vector X. An approach that has received some interest in prior work is to
measure how well X can reconstruct X (McCabel [1984; |Questier et al., 20053 [Farahat et al.,
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2011; Masaeli et al., [2010; [Papailiopoulos et al., 2014} [Zhu et al., 2015} [Han et al., |2018). It is
intuitive to consider reconstruction ability, because if the rejected features can be reconstructed
perfectly, then no information is lost when selecting a subset of features. To make the motivation for
this approach precise, we derive a rigorous justification that has not been presented in prior work.

To quantify reconstruction ability, we define the imputation loss L£(S) and the linear imputation loss
Liinear(S). Both quantify how much information X S contains about X®, and it is clear from their
definitions that £(S) < Linear(S).

Definition 1 (Imputation loss). The imputation loss L(S) and the linear imputation loss Liinear(S)
quantify how well XS can reconstruct X using an unrestricted function, and using a linear func-
tion, respectively. They are defined as:

L(S) = mhin E[ ||XR _ h(XS)||2 ] 0
Elincar(s) = HI}Ii/n ]E[ ||XR —_ WXSH2 ] (2)

Either one could serve as a feature selection criterion, so we aim to address the following questions:

1. Why is it desirable to optimize for the reconstruction ability of selected features X ?

2. Is it preferable to measure reconstruction ability using £(S) or Ljipear(S)?

3.2 IMPLICATIONS OF IMPUTATION LOSS FOR DOWNSTREAM TASKS

In this section, we demonstrate through theoretical results that reconstruction ability is connected
to performance in downstream supervised learning tasks. These results aim to characterize the
usefulness of XS for predicting a target variable Y € R. All proofs are in Appendix

To facilitate this analysis, we assume that all learned models are optimal; this assumption ignores
practical problems such as overfitting and non-convex optimization, but makes it possible to shed
light on the connection between reconstruction ability and predictive power. Our analysis focuses
on the degradation in performance (henceforth called performance loss) when a model is fitted to
X ¢ instead of X. Intuitively, performance in the downstream task must suffer when information is
discarded. The question is, by how much?

Consider a fixed partitioning of features into (X<, X®). The first result addresses the situation
when a linear model is used to predict Y given XS. Theorem |1|states that the performance loss
has an exact expression, which can be related to Ljinea,(S). For this result we define the notation
¥, = Cov(X?), %, = Cov(XR), %, = Cov(X®, XR), and Yrls = X — Yo X3 1 g

Theorem 1 (Performance loss with linear model). Assume a prediction target Y such that

(bs,c.) = argmin E[(Y — b XS — " XR)?). 3)
b,c

Then, the performance loss for features X is:

min E[(Y — uTXS)Q] —min E[(Y —v"X)?] = 'S, 5c.. 4)

u v

The performance loss is a quadratic form based on the matrix ¥, 5, so it is dependent on the eigen-
structure of the matrix. To ensure strong performance in downstream tasks, it is therefore desirable
to select X so that 3|5 has small eigenvalues. The result is notable because it can be shown that the
linear imputation loss is equal to the sum of the eigenvalues, i.e., Linear(S) = Tr(¥,,). Selecting
XS to minimize Liinear (S) therefore minimizes the performance loss with linear models. This
perspective has not been presented in prior work, but lends support to several existing approaches
(Masaeli et al., 2010; [Farahat et al., [201 1} |[Papailiopoulos et al., 2014; Zhu et al., [2015)).
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Figure 1: Feature set comparison on simulated prediction tasks. Each point represents a single task,
and the legend shows the portion of tasks in which the method on y-axis outperforms the method on
X-axis.

The second result addresses the situation where a nonlinear model is used to predict Y. Nonlinear
models (e.g., neural networks, gradient boosting machines) are predominant in many machine learn-
ing applications, so this result is more relevant to contemporary practices. Theorem 2]states that the
performance loss can be upper bounded using £(S).

The result requires a mild assumption about the Holder continuity (a generalization of Lipschitz
continuity) of the conditional expectation function E[Y | X = z] that is not verifiable in practice.
Nonetheless, it connects the performance of X in prediction tasks with its ability to impute X 7.

Theorem 2 (Performance loss with nonlinear model). Assume a prediction target Y such that the
conditional expectation E[Y | X = z] is (C, a)-Holder continuous with exponent 0 < o < 1, so
that the following holds almost everywhere in the distribution of X :

|EY [ X =a]-E[Y | X =0b] | <C-[la—0|]3. (5)

Then, the performance loss for features XS can be upper bounded:

win E[(Y - f1(X5))’] —min E[(Y — f(X))?] < C2- £(S)". (6)

P

The bound in Theorem suggests that XS should be selected to minimize £(S), because doing so
reduces the upper bound on the performance loss. We appeal to the minimax principle to argue that
the minimization of £(S), by effectively minimizing the worst-case performance loss, provides the
most conservative way to select a small number of features (Von Neumann & Morgenstern, |1944)).

While this result is easiest to prove for Holder continuous tasks with the MSE loss function, the idea
that good reconstruction ability leads to strong predictive power should apply more broadly. Our
experiments in Section [3]confirm this empirically.

To make these results concrete, we present a simulation experiment involving two feature sets from
the single-cell RNA sequencing data described in Section The feature sets X Sroninear and X Siiear
were chosen so that £ (X Swninear) < £( X Sinear ) but Lijpeqr (X Sromines) > Lo cqr (X Sinear) We simu-
lated 250 response variables with linear dependencies on subsets of the original features (see Sec-
tion @), and trained linear and nonlinear (neural network) predictive models for each task.

Figure [I] shows the relative performance of the two feature sets. The important observations from
this experiment are that across a wide variety of tasks, nonlinear models perform better overall (Fig-
ure ), X Sweniinear ysually performs better when using nonlinear models (Figure ), and X Sinex
usually performs better when using linear models (Figure[T[C). These results provide empirical con-
firmation of both Theorem [I]and Theorem 2] and summarize our approach to feature selection.

To our knowledge, these results are novel in the space of unsupervised feature selection, despite
the long history of the linear imputation loss (McCabe, [1984) and recent interest in the nonlinear
imputation loss (Questier et al., 2005;|Han et al., 2018). While it is tangential to unsupervised feature
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Figure 2: Features are selected by learning a restricted autoencoder (RAE), and can be applied in
downstream prediction tasks.

selection, we also show in Appendix [A]that the results can be stated more generally for unsupervised
feature extraction.

Given these findings, and the predominance of nonlinear models in contemporary machine learning,
we proceed with an approach to select X by minimizing the imputation loss as follows:

S* = argmin {min ]E[||XR—f(XS)H2]} 7
|S|=k f

4 RESTRICTED AUTOENCODERS FOR FEATURE SELECTION

4.1 RESTRICTED AUTOENCODERS

We aim to select k features by solving the problem in Eq. However, two obstacles make the
problem difficult. First, £(S) is unknown in practice because we do not have access to the optimal
imputation functions. Second, the combinatorial number of sets of size k£ make an exhaustive search
infeasible. We therefore propose the framework of restricted autoencoders (RAEs) to jointly op-
timize for S and f, and train a model to reconstruct the full observation vector while relying on a
subset of the inputs. The approach is depicted in Figure[2] The concept of a RAE is straightforward,
but it requires a non-trivial learning algorithm.

Sparsity inducing penalties (Feng & Simon, 2017} Tank et al. 2018)) provide one option, but we
found that these did not perform well on large datasets. Indeed, experiments in Section [5]show that
the method of |Han et al.| (2018)) fails to effectively optimize for reconstruction ability. Instead, we
introduce a learning algorithm based on backwards elimination.

There are multiple ways to measure the sensitivity of a network to each input, and these can easily
be adapted into feature ranking methods; highly ranked features are those that are most critical for
performing accurate reconstruction. Instead of simply selecting the top ranked features, it may prove
beneficial to reject a small number of features, and reassess the importance of the remaining ones.
Following this logic, we present Algorithm [I] for learning a RAE by iteratively training a model,
ranking features, and eliminating the lowest ranked features, in a procedure that is analogous to
recursive feature elimination (Guyon et al., 2002).

To improve the running time of Algorithm |1} hy can be warm started using the model from the
previous iteration. A multi-layer perceptron (MLP) is a natural choice because of the multitask
prediction target; the model from the previous iteration can be modified by deleting columns from
the first layer’s weight matrix corresponding to eliminated features. In practice, we observe that this
significantly reduces the number of training steps at each iteration.

4.2 FEATURE RANKING METHODS

The purpose of the ranking step is to determine features that can be removed from S without impact-
ing the model’s accuracy. We consider two sensitivity measures, both of which are based on learning
per-feature corruption rates. The first method stochastically sets inputs to zero using learned dropout
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Figure 3: Imputation loss results. The MSE is normalized by the total variance of each dataset.

rates p; for each feature j € S (Chang et al.| [2017). Similarly, the second method injects Gaussian
noise using learned per-feature standard deviations ;. We refer to these methods as Bernoulli RAE
and Gaussian RAE, due to the kind of noise they inject. Based on the logic that important features
tolerate less corruption, we rank features according to p; or 0.

During training, both methods requir.e penalty Algorithm 1: Learning RAE
terms to encourage non-zero corruption rates. - —
A hyperparameter A controls the tradeoff be- input :dataset {X;}i,, schedule

tween accurate reconstruction and the amount S f{lv 2,..5p
of noise injected. The objective functions to be for & in schedule do
optimi i i i train hg : RIS — R9 to predict X given X
ptimized at each iteration of Algorithm [I|are 0 i p g
shown in Eqs.[8}9] and both are optimized using rank features in S .
stochastic gradient methods and the reparame- S « {k highest ranked features in S}
terization trick (Rezende et al., 2014} Maddison| end
et al.,[2016). return S
min By, p(p) [Ex[[|X —ho(X@m)|]*]] - )‘ZIngj (8)
P jes
. S 2 ].
min By o.0n [ Ex[[1X —ho(XS + 2)I[P]] +2) log(1+ —) )
a jes j

5 EXPERIMENTS

5.1 DATASETS AND BASELINE METHODS

We apply the RAE feature selection approach to two publicly available biological datasets: single-
cell RNA sequencing data, and microarray gene expression data. The single-cell RNA sequencing
dataset is from the Allen Brain Atlas, and contains expression counts for n = 24,411 cells and
d = 5,081 genes (Tasic et al.,[2018)). The microarray data were collected from patients with breast
cancer. Our dataset combines unlabeled samples from multiple Gene Expression Omnibus datasets
(n = 11,963), as well as labeled samples from The Cancer Genome Atlas (TCGA) (n = 590),
and we consider all genes that are present in both datasets (d = 7,592). We followed standard pre-
processing techniques: we used loglp of the expression counts for the single-cell RNA sequencing
data, and applied batch correction to the combined gene microarray datasets.

For both of these data domains, determining a small subset of informative features is an important
problem. In precision medicine, a key goal is to identify a small set of expression markers for
subtype classifications. As another example, fluorescent in-situ hybridization (FISH) methods (Raj
et al.| [2008; |Chen et al.l 2015) that measure the expression levels of pre-selected genes on intact
tissue have become popular in brain sciences. However, such probes are typically limited to a
handful of genes per hybridization round, and a problem of practical significance is to design the
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Table 1: Classification accuracy using subsets of features

Cell type classification Cancer subtype classification
# Features 5 10 20 30 50 5 10 20 30 50

Laplacian 0.219 0251 0.443 0.505 0.680 0.676 0.640 0.748 0.748 0.748
MCFS 0.111 0278 0.532 0.622 0.713 0.532 0.514 0.613 0.685 0.685

UDFS 0.291 0.510 0.656 0.702 0.767 0.505 0.532 0.631 0.640 0.649
PFS 0.268 0.335 0465 0565 0.649 0.622 0.685 0.703 0.721 0.712
AEFS 0.320 0.574 0.759 0.806 0.847 0.523 0.486 0.550 0.640 0.604

Variance 0.447 0541 0.741 0.793 0.822

Leverage 0.463 0.634 0.780 0.816 0.852 0.523 0.568 0.613 0.658 0.649
Jolliffe 0.264 0.557 0.712 0.793 0.844 0.667 0.676 0.622 0.685 0.703
Greedy 0.203 0.367 0.580 0.691 0.820 0.657 0.673 0.684 0.750 0.753

B.RAE 0484 0.674 0.789 0.822 0.845 0.679 0.687 0.701 0.721 0.753
G.RAE 0.487 0.667 0.771 0.822 0.846 0.645 0.678 0.686 0.694 0.740

most informative FISH probes using as few genes as possible. The resulting spatial transcriptomic
data can then be used to study multiple scientific problems (i.e., downstream tasks) relating to cell
function, communication, and tissue organization.

We compare RAEs with nine baseline methods. Jolliffe B4 (Jolliffe] |1972) and principal feature
selection (PFS, |Cui & Dy| (2008))) are both based on preserving the results of PCA. Greedy feature
selection (GFS, |[Farahat et al.| (2011))) and the leverage score method (Papailiopoulos et al., 2014)
both optimize for reconstruction with a linear function. Autoencoder feature selection (AEFS, Han
et al.| (2018)) selects features by attempting to induce sparsity in a shallow MLP. Max variance
simply selects features with the largest variance; it could not be applied to the microarray data,
because batch correction sets all features to have unit variance. Laplacian scores (He et al.l [2006)
and multi-cluster feature selection (MCFS, Cai et al.|(2010)) both aim to preserve local structure in
the data through spectral information. Unsupervised discriminative feature selection (UDFS, [Yang
et al. (2011))) aims to retain local discriminative information.

5.2 IMPUTATION ABILITY

We first demonstrate that RAEs select features that achieve a low imputation loss. Both datasets
were split into training, validation and test sets, and we used only the unlabeled samples for the gene
microarray data. For both datasets, we trained 20 RAEs by iteratively eliminating features using
learnable Bernoulli and Gaussian noise. After features were selected, a separate imputation model
was trained to predict only the rejected features, and the best features from the 20 trials were selected
using a validation set. Similarly, imputation models were trained using features selected by all the
baseline methods. The imputation loss was then estimated on the test set.

Hyperparameter choices were made on validation data, and are detailed in Appendix |[El The RAEs
are robust to both shallow and deep architectures, because the feature rankings are more important
than the prediction accuracy. Iteratively eliminating features proved to be critical for both datasets,
and we eliminated 20% of the remaining features at each iteration of Algorithm

Figure [3|displays the results, showing the imputation loss for different numbers of selected features.
RAE:s achieve the best performance on both datasets. The gap is larger on the single-cell RNA
sequencing data, where the RAEs perform significantly better than all baselines. RAEs and GFS
achieve similar results on the microarray data, outperforming all other methods by a large margin.

GFS is a competitive baseline method, possibly because while it optimizes for linear reconstruction
ability, it has the benefit of performing forward selection. Jolliffe and PFS are somewhat com-
petitive, likely due to implicit connections between PCA and the linear imputation loss. Mean-
while, AEFS does not appear to effectively optimize for nonlinear reconstruction ability, and the
non-reconstruction methods (Laplacian, MCFS, UDFS) naturally lead to poor reconstruction. In
Appendix [D]we provide these results in a table. In Appendices[F}{G| we demonstrate the importance
of eliminating features iteratively, and analyze the variability between trials of RAEs.
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Figure 4: Results from the simulation study using scRNA data. Heatmaps provide pairwise compar-
isons, showing the portion of tasks in which features from the method on the y-axis achieved better
performance than features from the method on the x-axis.

5.3 REAL DOWNSTREAM PREDICTION TASKS

Next, we assess the performance of selected features in downstream prediction tasks. Both datasets
have associated classification problems that, in certain settings, would need to be performed using
a subset of features: cell type classification (150 types) for the single-cell RNA data, and cancer
subtype classification (4 types) for the microarray data. For the single-cell data, we used the same
dataset split; for cancer classification we split the labeled TGCA samples. MLPs were trained for
each task, and the reported accuracy is the average performance of 10 models on the test data.

Table[T] displays the results for both datasets. Features selected by RAEs perform very well in both
tasks, particularly when using a smaller number of features. Overall, RAEs achieve the best perfor-
mance most of the time (7/10), and when they do not, they are still among the best. In Appendix@
we present the same results in a plot that reveals a strong correlation between imputation ability and
classification accuracy. We posit that features selected by RAEs perform well not because they were
lucky to select “marker genes” for these tasks, but because they were optimized for reconstruction
ability, and are therefore guaranteed to perform well in a variety of prediction problems.

5.4 LARGE-SCALE SIMULATION STUDY

The prediction problems in Section [5.3]provide one approach for verifying that RAEs select features
with strong predictive power. However, it would be more informative to assess performance across a
large number of prediction tasks. Since these two datasets do not offer a large number of prediction
targets, our final experiment is a large-scale simulation study.

Using the single-cell RNA sequencing data, we simulate response variables with three kinds of
dependencies on the original features. The response variables are simulated with either linear de-
pendencies, quadratic dependencies, or involve interactions terms. There are 250 prediction targets
of each type, and the simulation method is described in more detail in Appendix [H] We then trained
MLPs to predict the response variables using the features selected by each algorithm.

The full results are in Appendix [H] and a representative summary is displayed in Figure f] with
heatmaps showing how often features from one method achieve better performance than features
from another method. These results show that the features selected by a Bernoulli RAE and Gaus-
sian RAE, which achieve lower imputation loss than all baselines, also achieve better performance
in a majority of prediction tasks. Conversely, the features that perform most poorly (MCFS, Lapla-
cian scores) are those with the worst reconstruction ability. The simulation study provides further
empirical evidence for the theory in Section [3.2} underscoring the idea that selecting features for
reconstruction ability leads to strong performance across a wide variety of prediction problems.
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6 DISCUSSION

In this work we proposed a feature selection approach based on reconstruction ability, which we
showed both theoretically and empirically has implications for the performance of features in down-
stream prediction tasks. We present the framework of restricted autoencoders (RAEs), and propose
a learning algorithm based on iterative elimination, using learnable per-feature corruption rates to
identify features that are unimportant to the model. Given the firm theoretical foundation for this
feature selection approach, future work could focus on developing better algorithms for training
RAE:s, e.g., through forward selection.
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A THEOREMS FOR UNSUPERVISED FEATURE EXTRACTION

In Section 3.2, we presented theoretical results to motivate the use of a reconstruction loss for un-
supervised feature selection. Similar results can be stated for the more general problem of unsuper-
vised feature extraction.

Consider an embedding function g : R? ++ R* for a random variable X € R?. The embedding
function induces a distribution for a new random variable Z € R*, which can be used in place of X
in downstream tasks. Here, we state two theorems for how well Z should perform when predicting
a target variable Y € R.

The first result addresses the situation where the embedding function is linear, i.e., Z = W X, and
a linear model is used for the prediction task. For this result, we define the notation ¥ = Cov(X),
Yzx = Cov(Z,X), Xz = Cov(Z). We restrict our attention to linear operations such that Z is
non-degenerate, so that X7 = WEWT is invertible. As in the main text, we assume that all random
variables have mean zero.

Theorem 3 (Performance loss with linear model). Assume a prediction target Y such that

v, = argmin E[(Y —vT X)?]. (10)

v

Then, the performance loss for a linear embedding variable Z = W X is:

min E[(Y — " 2)*] - minE[(Y — v X)?] = 0](8 - 27 x5, Szx)v. an

To see the connection with reconstruction ability, we point out that the reconstruction ability of Z
is the trace of precisely the same matrix, i.e., ming E[ ||[X — BZ||? | = Tr(X — 2%, 'Yzx).
Therefore, learning Z to achieve a low reconstruction error can be understood as minimizing the
performance loss. This is precisely what is done by PCA (Jollifte, | 2011)), so this result supports the
classic idea of principal components regression (Jolliffe, [1982).

The second result addresses the situation where a nonlinear model is used for the prediction task.
Similarly to Theorem 2] the result requires an assumption about the Holder-continuity of the condi-
tional expectation function.

Theorem 4 (Performance loss with nonlinear model). Assume a prediction target Y such that the
conditional expectation function B[Y | X = z] is (C, o)-Holder continuous with exponent 0 < o <
1, so that the following holds almost everywhere in the distribution of X :

|EY [ X =a] -E[Y | X =0b] | <C-[la—10|]5. (12)

Then, the performance loss for an embedding variable Z = g(X) can be bounded:
min B[(Y ~ A1(X¥))"] —min E[(Y = £(X))"] < €% (min E[|IX ~h(Z)|*])"  (13)
1 2

11
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This second result provides support for autoencoders (AEs, Hinton & Salakhutdinov| (2006)), which
jointly learn an encoder g and decoder h to optimize the reconstruction loss that shows up in the
bound of Eq.[I3] The connection with feature selection is that ¢ is a very particular linear function.

B PROOFS OF THEOREMS FOR UNSUPERVISED FEATURE EXTRACTION

We begin by proving the results stated in Appendix [A] In Appendix [C] we show that these lead to
straightforward proofs for the results in the main text.

Proof of Theorem[3| We introduce the notation X xy = Cov(X,Y) € R4, and calculate the MSE
arising from the optimal linear model fit to X.

v, = argmin E[(Y — 0T X)?]

= Eilsz
E[(Y — oI X)?] =E[(Y - 2%, 57'X)?]
= Var(Y) - 2% 2 ' Sxy

Similarly, we calculate the MSE from the model fit to Z.

u, = argmin E[(Y — v’ Z)?

= (WEWhH'Weyy
E((Y —uy 2)*) = E[(Y — Sk WH(WEWT) "1 2)?]
= Var(Y) - 24, WIT(WEWT) "' WExy

Taking the difference between the two terms, we get the desired result:

min E[(Y —u"2)?] —minE[(Y — 0" X)?] = 2%, 27 ' Sxy - S5, W WEWT) W Exy

=0l Yv, — T SWT(WEW D) "' W S,
= vl S, — vl %L S Yy
= v/ (T - EEXE;EZX)U*

O

Proof of Theorem[d] Consider the terms on the left side of the inequality. Both can be understood
in terms of conditional variance.

min E[(Y - £1(2))"] = min E[(Y - E[Y|Z))*] + E[(f1(2) - E[Y|2))"]

f1
=E[(Y - E[Y|Z])?]
= E[Var(Y|Z)]
min E[(V - £(X))?] = min E[(Y - E[Y|X])?] + E[(f2(X) —E[Y|X])’]

2
=E[(Y - E[Y|X])?]
= E[Var(Y|X)] (14)
Now, consider the first term in more detail. The following can be shown by using the Holder con-

tinuity of the conditional expectation function, and applying the law of total variance and Jensen’s
inequality.

12
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Var(Y|Z = z) = Ex|z—.[Var(Y|Z = 2, X)] + Varyx ;—.(E[Y|Z = 2, X])

Vary|z—.(E[Y|Z = 2,X]) = Varx|z—. (E[YV]Z = 2, X| —E[Y|X = E[X|Z = 2]])
<Exjz=:[(E[Y|Z = 2z, X] —E[Y|X = E[X|Z = 2]])]
= Exz—-[(E[Y|X] —E[Y|X = E[X|Z = 2]])’]
< C? Exz=:[ ||IX —E[X|Z = z]||**]
< C*-E[||X - E[X|Z = 2| ]*
=C? Tr (Cov(X|Z = 2))°

min E[(Y — f1(2))’] = E[Var(Y|Z = z)]

=Ex z[Var(Y|Z,X)] + E[C? - Tr (Cov(X|Z))“]
< Ex z[Var(Y]Z, X)) + C% - Tr (E[ Cov(X|2) ])*
=E[Var(Y|X)] + C* - Tr (E[ Cov(X|2) ])* (15)

Then, combine Eqs. [T413]to obtain the following bound:

min E[(Y - /1(2))°] - min E[(Y - f1(X))*] < C*-Tx (B[ Cov(X|2) )" (16)

Finally, consider the term that appears in the right side of Eq.[T] It can also be understood in terms
of conditional covariance. Substituting this value into the above inequality completes the proof.

min B[ [|X = h(Z)|[* ] = min E[[|X —E[X|Z]|* ] + E[[|n(2) - E[X|Z]|]"]
=E[[|X - E[X|Z]|]* ]
=E[Tr (X - E[X|Z])(X - E[X|Z])")]
=Tr (E[ Cov(X|Z2) ])

C PROOFS OF THEOREMS FOR UNSUPERVISED FEATURE SELECTION

Now, we proceed with proofs of the results presented in Section[3.2]of the main text. They follow in
a straightforward manner from proofs in Appendix

Proof of Theorem[I] Feature selection is an embedding with a particular kind of linear function. It
can be seen that X° = Z = WX for W € R¥*P with a single 1 in each row, corresponding to
the selected features, and zeros everywhere else. Without loss of generality, we can assume that the
features are ordered such that the full covariance matrix can be partitioned into blocks corresponding
to the selected features S and rejected features R.

X, X
== (s %)

ST

Then, the following can be seen:

13



Preprint.

Y25y E Nx =2 - (W)Y (WwEwT) (W)

=% - (EZT) DI I
o Zs Zsr
o T\sn 2Ty,

sris
(00
—\0 Er\s

The expression for the performance loss then follows from Theorem [3]

g 107~ sl = () (3 52) (%)

u v
T
= C, L |sCx

O

Proof of Theorem 2] The bound involving the imputation loss £(S) follows directly from Theo-
rem upon the observation that £(S) is precisely the term in the upper bound.

min E[[|X — W2)|1* ) = min E[[|.X — h(X®)|1?]
= min E[ ||X® — h(X®)|?]
= L(S)

D IMPUTATION ABILITY AND DOWNSTREAM CLASSIFICATION RESULTS

In this section, we present results from Section and Section in alternate form. Table [2|shows
the imputation loss for the single-cell RNA sequencing data, and Table [3| shows the results for the
gene microarray data. As in the main text, the MSE is normalized to reflect the portion of total
variance. It is clear that RAEs nearly always select features that achieve the best imputation loss.

Figure [5| shows the results from the downstream classification tasks in graphical form, for 10 fea-
tures. The plot shows a very clear linear trend between imputatation ability and classification accu-
racy, further underscoring the idea that features selected by RAEs perform well precisely because
they have good reconstruction ability.

E HYPERPARAMETER TUNING

In this section we detail all hyperparameter choices that were made in this work. In general, we
followed best practices of tuning hyperparameters on training and validation data, and reserved the
test set for getting a final estimate of a model’s performance. The validation set was also used to
perform early stopping: we trained all models until they failed to achieve a new best value of the
loss function for several consecutive epochs.

Table [ shows hyperparameter choices that were made for training RAEs with either Bernoulli or
Gaussian noise (Section[5.2). The “schedule” indicates the portion of remaining features that were
eliminated at each iteration of Algorithm[I] Eliminating features iteratively proved to be critical for
these high-dimensional datasets (see Appendix[G)). For the penalty hyperparameter X that is used in
both methods, * indicates that A was annealed at each iteration. After the model converged, features
were eliminated if the average dropout rate p; exceeded 0.5. Otherwise, A was doubled and the

14
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Figure 5: Downstream prediction accuracy versus imputation loss for subsets of 10 features selected
by each method. Results across both datasets reveal a relationship between reconstruction ability
and the predictive power of subsets of features.

Table 2: Single-cell RNA sequencing imputation loss (MSE)

# Features 5 10 20 30 40 50

Laplacian 0.782 0.771 0.729 0.714 0.696 0.685
MCEFS 0.869 0.784 0.731 0.702 0.694 0.682
UDEFS 0.792 0.732 0.700 0.688 0.675 0.666
PFS 0.758 0.741 0.706 0.686 0.677 0.669
AEFS 0.783 0.720 0.684 0.670 0.663 0.658

Variance 0.752 0.719 0.694 0.669 0.665 0.660
Leverage 0.793 0.711 0.684 0.675 0.667 0.663
Jolliffe 0.769 0.710 0.683 0.674 0.667 0.662
Greedy 0.765 0.725 0.685 0.667 0.657 0.650

Bern. RAE  0.731 0.680 0.658 0.650 0.647 0.643
Gauss. RAE  0.731 0.678 0.657 0.650 0.647 0.644

Table 3: Gene microarray imputation loss (MSE)

# Features 5 10 20 30 40 50

Laplacian 0912 0874 0.833 0.807 0.787 0.772
MCFS 0949 0.899 0.840 0.796 0.770 0.747
UDFS 0985 0945 0.842 0.806 0.780 0.762
PFS 0.895 0.847 0.790 0.757 0.732 0.717
AEFS 0984 0933 0.869 0.830 0.805 0.779
Leverage 0962 0925 0.867 0.814 0.785 0.770
Jolliffe 0900 0.848 0.797 0.772 0.747 0.732
Greedy 0.887 0.823 0.766 0.739 0.713 0.696

Bern. RAE  0.896 0.835 0.774 0.737 0.713 0.696
Gauss. RAE  0.887 0.832 0.770 0.737 0.714 0.698
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Table 4: Restricted autoencoder hyperparameters

Single-cell RNA Gene microarray
Bernoulli  Gaussian Bernoulli ~ Gaussian
Optimizer Adam Adam Adam Adam
Learning rate 1073 1073 1073 1073
Minibatch size 256 256 32 32
Architecture [100] x4 [100] x 4 [100] x 2 [100] x 2
Activations ELU ELU ELU ELU
Schedule 20% 20% 20% 20%
A 10.0* 0.1 10.0* 10.0

Table 5: Imputation model hyperparameters

Single-cell RNA  Gene microarray

Optimizer Adam Adam
Learning rate 1073 1073
Minibatch size 264 256
Architecture [100] x 4 [500] x 2
Activations ELU ELU

model was retrained. Overall, both methods were robust to most hyperparameters, except for the
penalty parameter A\ and the schedule.

Table[5]shows hyperparameters that were used to train imputation models given the features selected
by each algorithm. Table [ shows hyperparameters that were used to train models for downstream
tasks, including both real classification problems (Section[5.3)) and simulated tasks (Section[5.4).

Finally, several baseline methods required hyperparameter choices. For Laplacian scores and MCFS,
we calculated the O-1 similarity matrix between data points using 5 nearest neighbors. For the
leverage scores method, we calculated leverage scores using a latent dimension of 25. For AEFS,
we used a MLP with a single hidden layer of size 100, and tuned the regularization hyperparameter
on validation data.

F VARIANCE WITHIN TRIALS

Unlike many of the baseline methods we considered, RAEs do not select features deterministically.
Variability arises from the model initialization and optimization, and manifests itself in the selection
of different features in each trial. That variability is beneficial, in the sense that the best features
can be selected by measuring their performance on validation data. Here, we analyze the amount of
variability incurred by RAEs through several experiments on the single-cell RNA sequencing data.

In Figure [6] we plot the mean and standard deviation of the imputation loss across 20 trials. For
context, we include two baseline methods: Jolliffe, which is somewhat competitive, and Laplacian

Table 6: Downstream prediction model hyperparameters

Cell type Cancer subtype  Simulated tasks

Loss function  Cross entropy  Cross entropy MSE
Optimizer Adam Adam Adam
Learning rate 1073 1073 1073
Minibatch size 64 32 32
Architecture [100] x 2 [16] x 1 [50] x 1
Activations ELU ELU ELU

16



Preprint.

0.90 Random (Mean)
Random (Mean +20)
. - Jolliffe
i 0-85 4+— Laplacian
=3 —f— Bernoulli RAE
% 0.80 —— Gaussian RAE
8
c
o
= 0.75
©
8
3
o
Eovo
0.65

10 20 30 40 50
Number of features

Figure 6: Variance of imputation loss achieved by RAEs, and comparison with randomly selected
features.

Table 7: Stability analysis

10 Features 30 Features 50 Features
Jaccard Adj. Rand Jaccard Adj. Rand Jaccard Adj. Rand

Bernoulli RAE  0.722 0.833 0.722 0.834 0.718 0.830
Gaussian RAE ~ 0.736 0.843 0.720 0.833 0.832 0.905

scores, which is among the least competitive baselines. We also include the results from 100 ran-
domly selected sets of features. The results indicate that the amount of variance in the imputation
loss from RAEs is negligible, compared to the gap with baseline methods. They also indicate that
selecting features at random naturally performs much worse, but that it is easier to pick good features
when the set is larger.

In Table[7]we quantify the consistency in the features that are selected within 20 trials. We calculate
the average Jaccard index, and the average adjusted Rand index between each pair of trials. The
results indicate that both methods are quite consistent, but that there is always variability.

To observe the variability in selected features across the two RAE methods, Bernoulli RAE and
Gaussian RAE, Figure [7shows the number of times each gene was selected among the 10 features,
within 20 trials. Both methods are very consistent with 8 of their features, selecting them over 15
times within 20 trials. The two methods even tend to select 7 of the same features in most trials.
These results show that the methods have a degree of consistency in the features they select. We
leave for future work an analysis of the function of these genes for single-cell data.

G IMPORTANCE OF ITERATIVE ELIMINATION

To illustrate the importance of iterative elimination of features, as in Algorithm [T} we conduct an
ablation experiment where we remove this aspect of the method. On both datasets, we learn RAEs
by training an AE with Bernoulli or Gaussian noise a single time, ranking the features, and simply
selecting the top ranked features. For a fair comparison, we chose the best results from 20 trials.

Figure |8| shows a comparison with the results in the main text, with the additional context of two
baseline methods: Jolliffe, which is somewhat competitive, and Laplacian scores, which is among
the least competitive baselines. The results demonstrate that iterative elimination is key to perform-
ing effective feature selection, especially for small numbers of features.
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Figure 7: Bar chart of gene selections on single-cell RNA sequencing data. The stacked bar chart
shows how many times each gene was among the 10 genes selected by each method, within 20 trials.
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Figure 8: Comparison of RAEs learned through iterative elimination, and a single ranking step.
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H SIMULATION STUDY

For the simulation study in Section we simulated 250 response variables for each of three
kinds of dependencies: linear, quadratic, and interaction effects. The precise method for simulating
response variables was as follows.

For each the linear task, we selected 50 genes uniformly at random, then simulated a coefficient
vector from N (0, I5g). The response variables were then calculated for every observation vector in
the dataset, with no additional noise added. The simulation method was similar for the quadratic and
interaction effect tasks. For the quadratic tasks, we selected 25 genes to have linear dependencies,
and 25 genes to have quadratic dependencies. For the interaction tasks, we selected 25 genes to have
linear dependencies, and then 25 pairs of genes (selected uniformly at random), where the response
variable depended linearly on the product of the two genes’ expression levels.

The full results of the simulation study are shown in Figure 0] including results for sets of 10,
20, and 30 genes. The results show that the features selected by the Bernoulli RAE and Gaussian
RAE outperform other features in a large portion of tasks. The most plausible explanation for these
features’ consistent ability to make better predictions is their superior reconstruction ability.
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Figure 9: Results from the simulation study using single-cell RNA sequencing data. 250 response
variables were simulated with three kinds of dependencies on the original features (750 total tasks)
and were predicted using subsets of features. Heatmaps show pairwise comparisons between feature
sets, displaying the portion of tasks in which features from the method on the y-axis outperformed

those on the x-axis.
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Quadratic Tasks (30 Feats.)
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Interaction Tasks (30 Feats.)
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